Федеральное государственное бюджетное образовательное учреждение высшего образования

«ВЕРХНЕВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ АГРОБИОТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО Верхневолжский ГАУ)

ИНСТИТУТ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ И БИОИНЖЕНЕРИИ

УТВЕРЖДЕНА

протоколом заседания методической комиссии факультета № 6 от 28.05.2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Прикладная механика»

Направление подготовки / специальность 19.03.03 Продукты питания животно-

го происхождения

Направленность (профиль) «Технология молока, пробиотических мо-

лочных продуктов и сыров»

«Технология мяса и мясных продуктов»

Уровень образовательной программы

Форма обучения

Бакалавриат Очная, заочная

Трудоемкость дисциплины, ЗЕТ

3

Трудоемкость дисциплины, час.

108

Разработчик:

Доцент кафедры технического сервиса и

механики

В.В.Колобова

(подпись)

СОГЛАСОВАНО:

Заведующий кафедрой технического сервиса и механики

В.В. Терентьев

(подпись)

Иваново 2024

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является подготовка специалиста, способного решать основные задачи расчета простейших конструкций на прочность, жесткость и устойчивость и умеющего оценить работоспособность и практическую пригодность рассматриваемой конструкции.

Задачи дисциплины — заложить основы инженерного мышления для последующего изучения специальных дисциплин. Решение задач курса прикладной механики дают возможность для оценки надежности конструкции, используя знания теории напряженного состояния материала при любых видах сопротивления.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В соответствии с учебным планом дисциплина относит-

ся к* Обязательной части образовательной программы

Статус дисципли-

ны**

базовая

Обеспечивающие

(предшествующие) дисциплины

Математика, физика, инженерная графика

Обеспечиваемые

(последующие) дисциплины Теория механизмов и машин, детали машин и основы конструирования

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) (ХАРАКТЕРИСТИКА ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ)

Шифр и наименование компетенции	Индикатор(ы) достижения компетенции / пла- нируемые результаты обучения	Номера разделов дисциплины, отвечающих за формирование данного индикатора компетенции
ОПК-2 «Способен применять основные законы и методы исследований естественных наук для решения задач профессиональной деятельности»	ИД-1 _{ОПК-2} Демонстрирует знание основных законов и методов исследований естественных наук для решения задач профессиональной деятельности. ИД-2 _{ОПК-2} Использует знания основных законов и методов исследований естественных наук для решения задач профессиональной деятельности. ИД-3 _{ОПК-2} Применяет основные законы и методы исследований естественных наук для решения задач профессиональной деятельности.	1, 2
ОПК-3 «Способен использовать знания инженерных процессов	ИД-1 _{ОПК-3} Демонстрирует знание основных способов решения инженерных задач для определения параметров технологических процессов и	1, 2

^{*} базовой / вариативной

^{**} обязательная / по выбору / факультативная

при решении профессиональ-	качества продукции	
ных задач и эксплуатации со-	ИД-2 _{ОПК-3} Использует знание основных спосо-	
временного технологического	бов решения инженерных задач для определе-	
оборудования и приборов»	ния параметров технологических процессов и	
	качества продукции	
	ИД-3 _{ОПК-3} Применяет способы решения инже-	
	нерных задач для определения параметров тех-	
	нологических процессов и качества продукции	

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Содержание дисциплины

4.1.1. Очная форма:

			ды уче гий и т кость	груд	оем-	ий*	
№ п/п	Темы занятий	лекции	практические (семинарские)	лабораторные	самостоятельная работа	Контроль знаний*	Применяемые активные и интерактивные технологии обучения
1. C	татика					•	
1.1.	Введение. Равновесие системы сходящихся сил	2	4	-	4	УО, Т,3	Решение задач
1.2.	Параллельные силы. Теория пар сил. Система сил, произвольно расположенных на плоскости.	2	4	-	10	УО, Т, 3	Решение задач
1.3.	Система сил, произвольно рас- положенных в пространстве. Равновесие с учетом трения.	2	2	2	4	УО, КР, Т, 3	Решение задач
2. C	опротивление материалов						
2.1.	Центральное растяжение (сжатие)	4	2	6	12	УО, Т, 3	Решение задач
2.2.	Сдвиг	2	-	4	4	УО, Т, 3	Решение задач
2.3.	Кручение	2	2	2	6	УО, Т, 3	Решение задач
2.4.	Прямой поперечный изгиб	4	4	4	14	УО, Т, 3	Решение задач

^{*}Форма контроля: УО – устный опрос, КР – контрольная работа, Т – тестирование, Э – экзамен, З – зачет.

4.1.1. Заочная форма:

			Виды учебных за- нятий и трудоем- кость, час.				
№ п/п	Темы занятий	лекции	практические (семинарские)	лабораторные	самостоятельная работа	Контроль знаний*	Применяемые активные и интерактивные технологии обучения
1. C	гатика						
1.1.	Введение. Равновесие системы сходящихся сил	0,5	1	-	6	УО, Т,3	Решение задач
1.2.	Параллельные силы. Теория	1	1	-	16	УО,	
	пар сил. Система сил, произ-					T, 3	Решение задач
	вольно расположенных на						
1.2	ПЛОСКОСТИ.	1	1	_	10	УО,	
1.5.	Система сил, произвольно расположенных в пространстве.	1	1	_	10	_	Решение задач
	Равновесие с учетом трения.					T, 3	т сшение задач
2. C	опротивление материалов			l		, -	
	Центральное растяжение (сжа-	1	-	2	20	УО,	Размания за пан
	тие)					T, 3	Решение задач
2.2.	Сдвиг	0,5	-	0,5	8	УО,	Решение задач
2.2	T.C.			0.5	4.4	T, 3	тетотте зиди г
2.3.	Кручение	1	-	0,5	14	УΟ,	Решение задач
2.4	Прамой попорожнуй може	1	1	1	20	T, 3	
2.4.	Прямой поперечный изгиб	1	1	1	20	УО, Т, 3	Решение задач
						1, 5	

^{*}Форма контроля: УО – устный опрос, КР – контрольная работа, Т – тестирование, Э – экзамен, З – зачет.

4.2. Распределение часов дисциплины (модуля) по семестрам

4.2.1. Очная форма:

Dyra ooyamyy	1 курс		2 курс		3 курс		4 курс	
Вид занятий	1	2	3	4	5	6	7	8
Лекции	-	18	-	-	-	-	-	-
Лабораторные	-	18	-	-	-	-	-	-
Практические	-	18	-	-	-	-	-	-
Самостоятельная работа	-	36	-	-	-	-	-	-
Итого контактной работы	-	72	-	-	-	-	-	-
Форма контроля	-	зачет	-	-	-	-	-	-

4.2.2. Заочная форма:

Вид занятий	1 курс	2 курс	3 курс	4 курс	5 курс
Лекции	-	6	-	-	-
Лабораторные	-	4	-	-	-
Практические	-	4	-	-	-
Итого контактной работы	-	14	-	-	-
Самостоятельная работа	-	94	-	-	-
Форма контроля	-	зачет	-	-	-

5. ОРГАНИЗАЦИЯ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Организация самостоятельной работы студентов основана на ПВД-12 «О самостоятельной работе обучающихся ФГБОУ ВПО «Ивановская ГСХА имени академика Д.К.Беляева»

5.1. Содержание самостоятельной работы по дисциплине

- Темы индивидуальных заданий:
 - Равновесие произвольной плоской системы сил.
 - Равновесие произвольной пространственной системы сил.
 - Центральное растяжение (сжатие).
 - Кручение.
 - Прямой поперечный изгиб.
- Темы, выносимые на самостоятельную проработку:
 - Краткий исторический очерк развития классической механики.
 - Равновесие системы взаимосвязанных тел.
 - Теорема Вариньона о моменте равнодействующей пространственной системы сил.
 - Потенциальная энергия деформации.
 - Правило Верещагина.
 - Выполнение курсовых проектов и курсовых работ по дисциплине не предусмотрено.

5.2. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется следующим образом:

- Устный опрос.
- Тестирование.
- Проверка решений индивидуальных заданий.
- Собеседование по решению индивидуальных заданий.

5.3. Учебно-методическое обеспечение самостоятельной работы

При выполнении самостоятельной работы рекомендуется использовать:

- Методические указания.
- Основную и дополнительную учебную литературу.
- Рекомендуемые онлайн-источники и интернет ресурсы.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная учебная литература, необходимая для освоения дисциплины

- 1) Теоретическая механика : учебник для студ. вузов / Ю. Ф. Лачуга, В. А. Ксендзов. 2-е изд., испр. и доп. М. : КолосС, 2005. 576с. : ил. **49** экз
- 2) Теоретическая механика. Интернет-тестирование базовых знаний: учеб.пособие / В. А. Диевский, А. В. Диевский. СПб.: Лань, 2010. 144с. **25** экз
- 3) Сборник заданий для курсовых работ по теоретической механике: учеб.пособие для втузов / под общ. ред. А.А.Яблонского. 7-е изд., испр. М.: Интеграл-Пресс, 2002. 384с. **89** экз
- 4) Молотников, В.Я. Техническая механика. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2017. 476 с. Режим доступа: http://e.lanbook.com/book/91295 Загл. с экрана.
- 5) Жуков, В.Г. Механика. Сопротивление материалов [Электронный ресурс] : учебное пособие. Электрон.дан. СПб. : Лань, 2012. 415 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=3721 Загл. с экрана.
- 6) Феодосьев В.Н. Сопротивление материалов. М.: Наука, 1986. 512 с. 43 экз

- 7) Миролюбов, И.Н. Сопротивление материалов. Пособие по решению задач. [Электронный ресурс] / И.Н. Миролюбов, Ф.З. Алмаметов, Н.А. Курицин, И.Н. Изотов. Электрон. дан. СПб. : Лань, 2014. 512 с. Режим доступа: http://e.lanbook.com/book/39150 Загл. с экрана.
- 8) Молотников, В.Я. Курс сопротивления материалов. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2016. 384 с. Режим доступа: http://e.lanbook.com/book/71756 Загл. с экрана.
- 9) Павлов, П.А. Сопротивление материалов. [Электронный ресурс] / П.А. Павлов, Л.К. Паршин, Б.Е. Мельников, В.А. Шерстнев. Электрон. дан. СПб. : Лань, 2017. 556 с. Режим доступа: http://e.lanbook.com/book/90853 Загл. с экрана.

6.2. Дополнительная учебная литература, необходимая для освоения дисциплины

- 1) Гернет М.М. Курс теоретической механики: Учебник для вузов. 5-е изд., испр. М.: Высш. шк., 1987. 344 с.: ил. **14** экз
- 2) Тарг С.М. Краткий курс теоретической механики: Учебник для втузов.— 10-е изд., перераб. и доп.— М.: Высш. шк., 1986.— 416 с.: ил. **105** экз
- 3) Сборник коротких задач по теоретической механике: Учеб.пособие для втузов/О.Э. Кепе, Я.А. Виба, О.П. Грапис и др.; Под ред. О.Э. Кепе.— М.: Высш. шк., 1989.— 368 с.: ил. **12**
- 4) Сопротивление материалов : учеб. пособие для студ. вузов / Павлов П.А. и др. ; под ред. Б.Е.Мельникова. 2-е изд., испр. и доп. СПб. : Лань, 2007. 560с. : ил. **19** экз
- 5) Введение в сопротивление материалов : учеб. пособие / под ред. Б.Е. Мельникова. 2-е изд.,испр. СПб. : Лань, 2002. 160с. **11** экз
- 6) Сопротивление материалов.Пособие по решению задач : учеб. пособие для вузов / Миролюбов И.Н. и др. 8-е изд., стер. СПб. : Лань, 2009. 512с. : ил. **25** экз
- 7) Долинский Д.В., Михайлов М.Н. Краткий курс сопротивления материалов. М.: Выс.шк., 1988. 432 с. **24** экз
- 8) Кудрявцев, С.Г. Сопротивление материалов. Интернет-тестирование базовых знаний. [Электронный ресурс] / С.Г. Кудрявцев, В.Н. Сердюков. Электрон. дан. СПб. : Лань, 2013. 176 с. Режим доступа: http://e.lanbook.com/book/5247 Загл. с экрана.

6.3. Ресурсы сети «Интернет», необходимые для освоения дисциплины

- 1) ЭБС издательства «Лань» / Точка доступа: https://e.lanbook.com
- 2) Единое окно доступа к образовательным ресурсам. Электронная библиотека / Точка доступа: http://window.edu.ru
- 3)Научная электронная библиотека ELIBRARY.RU / Точка доступа: https://elibrary.ru/defaultx.asp
- 4) ЭБС издательства «Лань» / Точка доступа: https://e.lanbook.com
- 5) Бесплатная электронная библиотека онлайн «Единое окно к образовательным ресурсам». Электронная библиотека / Точка доступа: http://window.edu.ru

6.4. Методические указания для обучающихся по освоению дисциплины

- 1) Теоретическая механика. Ч.1. "Статика" : метод. указания и задания к курс. раб. для студ. мех.с-х / В. В. Колобова, С. Г. Сахарова. Иваново : ИГСХА, 2010. 22с.
- 2) Теоретическая механика. Ч.2. Кинематика, динамика : метод. указания и задания к курс. работе для студ. мех. ф-та / В. В. Колобова, С. Г. Сахарова. Иваново : ИГСХА, 2011.-38c.

- 3) Сопротивление м атериалов. Часть 1: учебное пособие для самостоятельной работы обучающихся/ В.В. Колобова, А.М. Абалихин, И.В. Морозов.- Иваново: ИГСХА, 2019. 100 с.
- 4) Сопротивление материалов: методические указания и варианты заданий по выполнению расчетных работ/ В.В. Колобова, А.М. Абалихин.- Иваново, ИГСХА, 2020.- 79 с.

6.5. Информационные справочные системы, используемые для освоения дисциплины (при необходимости)

- 1) ЭБС «Консультант студента» / Точка доступа: http://www.studentlibrary.ru
- 2) Информационно-правовой портал «Консультант» / Точка доступа: http://www.consultant.ru

6.6. Программное обеспечение, используемое для освоения дисциплины (модуля) (при необходимости)

- Операционная система типа Windows
- Интернет-браузеры
- Microsoft Office, Open Office.

6.7. Информационные технологии, используемые при осуществлении образовательного процесса по дисциплине (модулю)

1) – Не используются

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Указывается материально-техническое обеспечение дисциплины: технические средства, лабораторное оборудование и др.

	T		
№	Наименование специализированных ауди-	Краткий перечень основного оборудования	
п/п	торий, кабинетов, лабораторий и пр.		
1.	Учебная аудитория для проведения за-	укомплектована специализированной (учебной)	
	нятий лекционного типа	мебелью, набором демонстрационного оборудова-	
		ния и учебно-наглядными пособиями, обеспечи-	
		вающими тематические иллюстрации, соответст-	
		вующие рабочим учебным программам дисциплин	
		(модулей).	
2.	Учебная аудитория для проведения за-	укомплектована специализированной (учебной)	
	нятий семинарского типа	мебелью, техническими средствами обучения, слу-	
		жащими для представления учебной информации.	
3.	Учебная аудитория для групповых и	укомплектована специализированной (учебной)	
	индивидуальных консультаций	мебелью, техническими средствами обучения, слу-	
		жащими для представления учебной информации	
4.	Учебная аудитория для текущего кон-	укомплектована специализированной (учебной)	
	троля и промежуточной аттестации	мебелью, техническими средствами обучения, слу-	
		жащими для представления учебной информации	
5.	Помещение для самостоятельной рабо-	укомплектовано специализированной (учебной)	
	ты	мебелью, оснащено компьютерной техникой с воз-	
		можностью подключения к сети "Интернет" и	
		обеспечено доступом в электронную информаци-	
		онно-образовательную среду организации	
6.	Учебная аудитория для проведения	укомплектована специализированной (учебной)	
	практических занятий	мебелью, техническими средствами обучения, слу-	
		жащими для представления учебной информации	

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

«Теоретическая механика»

1. Перечень компетенций, формируемых на данном этапе

Шифр и наимено-	Индикатор(ы) достижения компетенции/	Форма кон-	Оценочные
вание компетенции	планируемые результаты обучения	троля*	средства
1	3	4	5
ОПК-2 «Способен применять основные законы и методы исследований естественных наук для решения задач профессиональной деятельности»	ИД-1 _{ОПК-2} Демонстрирует знание основных законов и методов исследований естественных наук для решения задач профессиональной деятельности. ИД-2 _{ОПК-2} Использует знания основных законов и методов исследований естественных наук для решения задач профессиональной деятельности. ИД-3 _{ОПК-2} Применяет основные законы и методы исследований естественных наук для решения задач профессиональной деятельности.	Устный опрос, Контрольная работа, Тестирование, Зачет	Контрольные вопросы к устному опросу, задачи к контрольным работам, тестовые вопросы, вопросы к зачету
ОПК-3 «Способен использовать знания инженерных процессов при решении профессиональных задач и эксплуатации современного технологического оборудования и приборов»	ИД-1 _{ОПК-3} Демонстрирует знание основных способов решения инженерных задач для определения параметров технологических процессов и качества продукции ИД-2 _{ОПК-3} Использует знание основных способы решения инженерных задач для определения параметров технологических процессов и качества продукции ИД-3 _{ОПК-3} Применяет способы решения инженерных задач для определения параметров технологических процессов и качества продукции	Устный опрос, Контрольная работа, Тестирование, Зачет	Контрольные вопросы к устному опросу, задачи к контрольным работам, тестовые вопросы, вопросы к зачету

^{*} Форма контроля: T – тестирование, KP – контрольная работа, 3 – зачет, 9 – экзамен.

2. Показатели и критерии оценивания сформированности компетенций на данном этапе их формирования

П	Критерии оценивания*						
Показате-	неудовлетворительно	удовлетворительно	хорошо	отлично			
ЛИ	не зачтено		зачтено				
Полнота	Уровень знаний ниже	Минимально допус-	Уровень знаний в объ-	Уровень знаний в объ-			
знаний	ваний, имели место грубые ошибки	ний, допущено много негрубых ошибок	программе подготов- ки, допущено не- сколько негрубых ошибок				
Наличие	При решении стан-	Продемонстрированы	Продемонстрированы	Продемонстрированы			
умений	демонстрированы основные умения, имели место грубые ошибки	шены типовые задачи с негрубыми ошибками, выполнены все задания, но не в полном объеме	задачи с негрубыми ошибками, выполнены все задания в полном объеме, но некоторые с недочетами	решены все основные задачи с отдельными несущественными недочетами, выполнены все задания в полном объеме			
Наличие	При решении стан-	Имеется минималь-	Продемонстрированы	Продемонстрированы			
навыков (владение опытом)	дартных задач не про- демонстрированы ба-	ный набор навыков для решения стан- дартных задач с неко-	базовые навыки при решении стандартных	навыки при решении			
Характе-	Компетенция в полной	Сформированность	Сформированность	Сформированность			
ристика сформи- рованно-	мере не сформирова- на. Имеющихся зна- ний, умений, навыков недостаточно для ре- шения практических (профессиональных) задач	компетенции соответствует минимальным требованиям. Имеющихся знаний, умений, навыков в целом достаточно для решения практических (профессиональных)	компетенции в целом соответствует требованиям. Имеющихся знаний, умений, навыков и мотивации в целом достаточно для решения стандартных практических (профессиональных) задач	компетенции полностью соответствует требованиям. Имеющихся знаний, умений, навыков и мотивации в полной мере достаточно для решения сложных практи-			
		практических задач					
Уровень сформированности компетенций	Низкий	Ниже среднего	Средний	Высокий			

3. Оценочные средства

Фонд оценочных средств по учебной дисциплине «Прикладная механика» сформирован на ключевых принципах оценивания:

- валидности (объекты оценки должны соответствовать поставленным целям обучения);
- надежности (использование единообразных стандартов и критериев для оценивания достижений);
- справедливости (разные обучающиеся должны иметь равные возможности добиться успеха);
- своевременности (поддержание развивающей обратной связи);

- эффективности (соответствие результатов деятельности поставленным задачам).

Оценивание компетенций обучающегося производится преподавателем в процессе проведения практических занятий во время контактной работы, тестирования, а также сдачи обучающимся зачета по дисциплине в конце второго семестра.

3.1. Устный опрос

3.1.1. Контрольные вопросы по теме:

- 1. «Введение. Равновесие системы сходящихся сил»:
 - понятие абсолютно твердого тела;
 - виды реакций связи;
 - теорема о трех силах;
 - проекция силы на ось;
 - условия равновесия системы сходящихся сил.
 - 2. «Параллельные силы. Теория пар сил»:
 - момент силы относительно точки;
 - замена распределенной нагрузки сосредоточенной силой;
 - условия равновесия системы параллельных сил;
 - пара сил и алгебраический момент пары сил.
 - 3. «Система сил, произвольно расположенных на плоскости»:
 - теорема Вариньона;
 - три формы условий равновесия произвольной плоской системы сил;
 - равновесие системы взаимосвязанных тел;
 - статически определимые и статически неопределимые задачи.
 - 4. «Система сил, произвольно расположенных в пространстве»:
 - проекция силы на плоскость;
 - момент силы относительно оси;
 - приведение системы сил к простейшему виду;
 - условия равновесия произвольной пространственной системы сил.
 - 5. «Равновесие с учетом трения»:
 - трение скольжения, законы Кулона;
 - равновесие тела на шероховатой поверхности;
 - трение качения, момент трения качения;
 - качение без скольжения.
 - 6. «Растяжение и сжатие»:
 - продольная сила;
 - эпюра нормальных напряжений;
 - продольные и поперечные деформации;
 - диаграммы растяжения и сжатия;
 - перемещения поперечных сечений брусьев.
 - 7. «Теория напряженного состояния»:
 - виды напряженного состояния;
 - главные напряжения, главные площадки;
 - круг Мора;
 - обобщенный закон Гука.
 - 8. «Сдвиг»:
 - чистый сдвиг;
 - закон Гука при сдвиге;
- объемная деформация и потенциальная энергия при чистом сдвиге.
- 9. «Геометрические характеристики плоских сечений»:
- статические моменты сечений;
- моменты инерции сечений;
- изменение моментов инерции при параллельном переносе осей;

- главные оси инерции.

10. «Кручение»:

- крутящий момент;
- напряжения при кручении;
- деформации и перемещения при кручении;
- кручение брусьев круглого сечения.

11. «Прямой изгиб»:

- прямой чистый изгиб;
- построение эпюр поперечных сил и изгибающих моментов;
- нормальные и касательные напряжения при изгибе;
- деформации и перемещения при изгибе;
- расчеты на прочность и жесткость при изгибе.

3.1.2. Методические указания

Устный опрос по теме проводится в начале практического занятия с целью повторения теоретического материала перед решением практической задачи. Опрос проводится выборочно (3-4 человека). При правильном ответе работа на занятии оценивается одним дополнительным баллом.

3.2. Контрольная работа

3.2.1. Содержание контрольной работы:

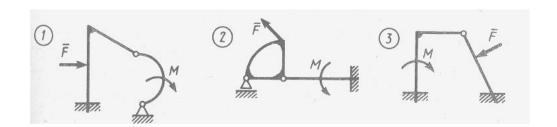
- 1. Контрольная работа № 1:
- равновесие произвольной плоской системы сил;
- равновесие произвольной пространственной системы сил.
- 2. Контрольная работа № 2:
- расчет на прочность и жесткость при центральном растяжении (сжатии);
- расчет на прочность и жесткость при прямом поперечном изгибе.

3.2.2. Методические указания

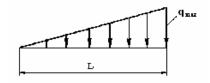
Контрольная работа проводится согласно календарному плану. Обучающимся выдается билет, содержащий 2 задачи. При решении контрольной работы разрешается пользоваться рабочими тетрадями. Каждая задача оценивается от нуля до трех баллов. Максимально возможное количество баллов за контрольную работу — 6.

3.3. Комплект тестовых заданий

3.3.1. Вопросы для проведения тестирования


1. Парой сил называется:

- а) система двух сил, равных по модулю и направленных вдоль одной линии действия в противоположных направлениях;
- б) система двух равных по модулю сил, направленных перпендикулярно друг другу;
- в) система двух равных по модулю, параллельных сил, направленных в противоположные стороны.


2. Сила трения зависит:

- а) от шероховатости соприкасающихся поверхностей;
- б) от площади соприкасающихся поверхностей;
- в) от скорости движения тела.

3. Укажите номер статически определимой конструкции.

4. Чему равна равнодействующая распределенной нагрузки?

5. Сила трения вычисляется по формуле:

a)
$$\overline{F} = f \cdot \overline{N}$$

$$\delta$$
) $\overline{F} = f \cdot m\overline{g}$

a)
$$\overline{F} = f \cdot \overline{N}$$
 6) $\overline{F} = f \cdot m\overline{g}$ 6) $\overline{F} = f \cdot \sum \overline{P}_{K}$

6. Сколько независимых уравнений равновесия можно составить для системы четырех тел, находящихся в равновесии под действием плоской системы сил?

7. Плечом пары называется:

- а) расстояние от заданной точки до линии действия одной из сил;
- б) расстояние между линиями действия сил;
- в) расстояние между точками приложения сил.

8. Пару сил нельзя переносить:

- а) в плоскости действия пары;
- б) в плоскость, перпендикулярную плоскости действия пары;
- в) в плоскость, параллельную плоскости действия пары.

9. Какую из формул нельзя использовать для вычисления момента силы относительно точки:

3. *a*)
$$M_o = \overline{F} \times \overline{r}$$

$$\delta M_o = \overline{F} \cdot \overline{r}$$

3. a)
$$M_o = \overline{F} \times \overline{r}$$
 $\delta M_o = \overline{F} \cdot \overline{r}$ $\epsilon M_o = F \cdot r \cdot \sin(\overline{F} \hat{r})$

10. Положение вектора главного момента в пространстве можно определить:

- а) с помощью направляющих косинусов;
- б) с помощью направляющих синусов;
- в) по правилу параллелограмма

Статическая определимость системы зависит от: 11.

- а) количества опор;
- б) количества опорных реакций;
- в) соответствия количества опорных реакций числу уравнений равновесия.

12. Момент силы относительно оси не равен нулю, если:

- а) линия действия силы перпендикулярна оси;
- б) линия действия силы параллельна оси;
- в) линия действия силы пересекает ось.

13. Две пары сил эквивалентны, если они имеют одинаковые по модулю и направлению:

- а) плечи;
- б) моменты;
- в) силы

14. Вектор силы нельзя переносить:

- а) параллельно самому себе в любую точку тела;
- б) вдоль линии действия в любую точку тела;
- в) как угодно в любую точку тела.

15. Сколько форм условий равновесия существует для произвольной плоской системы сил?

16. Тело нельзя вывести из состояния равновесия на шероховатой поверхности если активная сила проходит:

- а) вне конуса трения;
- б) внутри конуса трения;
- в) по образующей конуса трения.

17. Вектор момента пары сил лежит:

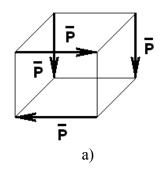
- а) в плоскости действия пары;
- б) в плоскости, параллельной плоскости действия пары;
- в) в плоскости, перпендикулярной плоскости действия пары.

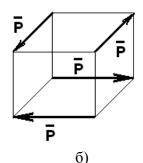
18. Какое из уравнений является теоремой Вариньона?

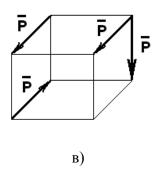
$$a)\overline{M} = \sum \overline{M}_K; \quad \delta)M = \pm F \cdot h; \quad \epsilon)M\left(\overline{R}\right) = \sum M\left(\overline{F}_K\right)$$

19. Какой из видов опор имеет наибольшее количество опорных реакций?

- а) жесткая заделка;
- б) катки;
- в) цилиндрический шарнир


20. Коэффициент трения качения измеряется:


- а) в Ньютонах;
- б) в метрах;
- в) безразмерный


21. Если направления главного вектора и главного момента пространственной системы сил параллельны, то система приводится:

- а) к равнодействующей, проходящей через центр приведения;
- б) к равнодействующей, не проходящей через центр приведения;
 - в) к динаме

22. Какую из указанных систем сил можно заменить одной парой сил?

23. Сколько уравнений равновесия можно составить для произвольной пространственной системы сил?

24. Расчет на жесткость при деформации растяжение – сжатие заключается с целью ограничить:

- 1) перемещения и деформации определенными пределами;
- 2) нормальные напряжения определенными пределами;
- 3) касательные напряжения определенными пределами

25. Напряжения в поперечных сечениях растянутого стержня определяются по формуле:

1)
$$\tau = \frac{Q}{A}$$
; 2) $\sigma = \frac{F}{A}$; 3) $\tau = \frac{M_K}{W}$.

26. Конструкционные материалы делятся на пластичные и хрупкие в зависимости от величины:

- 1) остаточного удлинения;
- 2) коэффициента Пуассона;
- 3) предела текучести

27. Какие величины характеризуют прочность материала?

- 1) относительное остаточное удлинение и относительное остаточное сужение;
- 2) остаточная деформация в продольном и поперечном направлениях;
- 3) предел пропорциональности, предел упругости, предел текучести, предел прочности

28. Условие прочности при растяжении – сжатии записывается в виде:

1)
$$\sigma_{max} = \frac{F_{max}}{A} \le [\sigma];$$
 2) $\sigma_{max} = \frac{M_{max}}{W_{v}} \le [\sigma];$ 3) $\tau_{max} = \frac{Q_{max}}{A} \le [\tau]$

29. На какой вид деформации хрупкие материалы работают лучше?

1) растяжение; 2) сжатие; 3) растяжение и сжатие одинаково.

30. Размеры поперечного сечения стержня при растяжении – сжатии определяются из условия

1) прочности; 2) жесткости; 3) прочности и жесткости.

31. Опасным напряжением при растяжении пластических материалов является предел:

1) прочности; 2) текучести; 3) упругости.

32. Выберите формулу для определения диаметра вала при кручении

1)
$$\sigma_{max} = \frac{F_{max}}{A} \le [\sigma];$$
 2) $\sigma_{max} = \frac{M_{max}}{W_x} \le [\sigma];$ 3) $\tau_{max} = \frac{M_{K_{max}}}{W_{\rho}} \le [\tau]$

33. Какая величина характеризует жесткость материала при растяжении – сжатии?

- 1) модуль упругости первого рода или модуль Юнга;
- 2) модуль упругости второго рода или модуль упругости при сдвиге;
- 3) коэффициент Пуассона

34. Условие жесткости при кручении записывается в виде:

1)
$$\Delta S = \frac{Q \cdot a}{GA} \le [\Delta S];$$
 2) $\theta = \frac{M}{GI_p} \le [\theta];$ 3) $\Delta \ell = \frac{F\ell}{EA} \le [\Delta \ell]$

35. Наибольшие касательные напряжения при кручении определяются по формуле:

1)
$$\tau_{max} = \frac{M_{K_{max}}}{W_0}$$
; 2) $\tau_{max} = \frac{Q}{A}$; 3) $\tau_{max} = \frac{M_{K_{max}}}{W_x}$.

36. При деформации кручение выгоднее использовать

1) сплошной круглый вал; 2) полый вал (трубчатый вал); 3) квадратный вал.

37. Какая величина характеризует жесткость поперечного сечения вала при кручении

1)
$$E \cdot A$$
; 2) $G \cdot J_p$; 3) $E \cdot J_x$.

38. Условие прочности при изгибе записывается в виде:

1)
$$\sigma_{\text{max}} = \frac{F_{\text{max}}}{A} \le [\sigma];$$
 2) $\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_{\text{max}}} \le [\sigma];$ 3) $\tau_{\text{max}} = \frac{Q_{\text{max}}}{A} \le [\tau].$

39. На деформацию изгиба лучше работает балка

- 1) круглого поперечного сечения;
- 2) двугаврового поперечного сечения;
- 3) прямоугольного поперечного сечения.

40. Размеры поперечного сечения балки при изгибе определяются из условия:

1) прочности; 2) жесткости; 3) прочности и жесткости.

41. Какие силовые факторы возникают в поперечных сечениях балки в общем случае изгиба?

- 1) изгибающий момент и поперечная сила;
- 2) только изгибающий момент;
- 3) только поперечная сила.

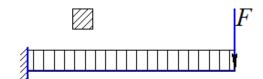
42. Какая величина характеризует жесткость поперечного сечения балки при изгибе?

1)
$$E \cdot A$$
; 2) $G \cdot J_p$; 3) $E \cdot J_x$.

43. Выберите необходимую формулу для проверки прочности растянутого образца:

1)
$$\tau_{\text{max}} = \frac{T_{\text{max}}}{W_P} \le [\tau];$$
 2) $\sigma_{\text{max}} = \frac{F_{\text{max}}}{A} \le [\sigma];$ 3) $F_k = \frac{\pi^2 E I_{\text{min}}}{(\mu \ell)^2}$.

44. Выберите необходимую формулу для определения наибольшей сжимающей силы


1)
$$\tau_{max} = \frac{M_{max}}{W_0} \le [\tau];$$
 2) $\sigma_{max} = \frac{F_{max}}{A} \le [\sigma];$ 3) $\Delta \ell = \frac{F\ell}{EA} \le [\Delta \ell]$

2)
$$\sigma_{max} = \frac{F_{max}}{4} \leq [\sigma];$$

3)
$$\Delta \ell = \frac{F\ell}{EA} \le [\Delta \ell]$$

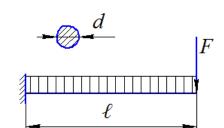
45. Выберите необходимую формулу для определения изгибающей силы F

1)
$$\sigma_{max} = \frac{F_{max}}{A} \le [\sigma];$$

2)
$$F_K = \frac{\pi^2 EI_{min}}{(u\ell)^2}$$
;

3)
$$\sigma_{max} = \frac{F\ell}{W_x} \le [\sigma]$$

46. Выберите необходимую формулу для нахождения распределенной нагрузки [q]

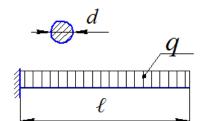

1)
$$\tau_{max} = \frac{M_{K_{max}}}{W_{\rho}} \leq [\tau];$$

2)
$$\sigma_{max} = \frac{M_{max}}{W_x} \le [\sigma];$$

3)
$$\tau_{max} = \frac{Q_{max}}{A} \le [\tau]$$

47. Выберите необходимую формулу для определения поперечного сечения балки

1)
$$\tau_{max} = \frac{M_{K_{max}}}{W_{\rho}} \leq [\tau];$$



2)
$$\sigma_{max} = \frac{M_{max}}{W_x} \le [\sigma];$$

3)
$$\sigma_{max} = \frac{F_{max}}{A} \le [\sigma]$$

48. Выберите необходимую формулу для определения поперечного сечения бруса

1)
$$\tau_{max} = \frac{4Q_{max}}{\pi d^2} \le [\tau];$$

2)
$$\sigma_{max} = \frac{32M_{max}}{\pi d^3} \leq [\sigma];$$

3)
$$\tau_{max} = \frac{16M_{K_{max}}}{\pi d^3} \le [\tau]$$

49. Выберите формулу для определения размеров толкателя системы газораспределения из условия жесткости:

1)
$$y = \int \frac{M_X \cdot M_X^0}{EI_V}$$
; 2) $\Delta \ell = \frac{F \cdot \ell}{EA} \le [\Delta \ell]$; 3) $\Delta S_{max} = \frac{Q \cdot a}{GA} \le [\Delta S]$

50. Выберите формулу для определения диаметра вала при кручении

1)
$$\tau_{max} = \frac{4Q_{max}}{\pi d^2} \le [\tau]; \ 2) \sigma_{max} = \frac{32M_{max}}{\pi d^2} \le [\sigma]; \ 3) \tau_{max} = \frac{16M_{K_{max}}}{\pi d^2} \le [\tau]$$

51. Выберите необходимую формулу для проверки жесткости распределительного вала механизма газораспределения:

1)
$$\Delta S_{max} = \frac{Q \cdot a}{GA} \leq [\Delta S];$$
 2) $\varphi_{max} = \frac{M_k \cdot \ell}{GI_p} \leq [\varphi];$ 3) $\Delta \ell_{max} = \frac{F \cdot \ell}{EA} \leq [\Delta \ell]$

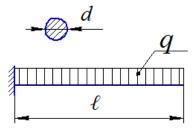
52. Выберите формулу для определения наибольшего крутящего момента из условия жесткости:

1)
$$\Delta S_{max} = \frac{Q \cdot a}{GA} \leq [\Delta S];$$
 2) $\varphi_{max} = \frac{M_k \cdot \ell}{GI_0} \leq [\varphi];$ 3) $\Delta \ell_{max} = \frac{F \cdot \ell}{EA} \leq [\Delta \ell]$

53. Выберите необходимую формулу для определения наибольшего усилия на поршень двигателя:

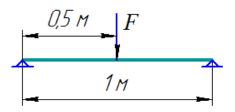
1)
$$\sigma_{max} = \frac{M_{max}}{W_x} \le [\sigma]; \ 2) \ \sigma_{max} = \frac{F_{max}}{A} \le [\sigma]; \ 3) \ \Delta \ell_{max} = \frac{F \cdot \ell}{EA} \le [\Delta \ell]$$

55. Выберите необходимую формулу для определения диаметра каждого из двух болтов головки шатуна:


1)
$$\sigma_{max} = \frac{M_{max}}{W_x} \le [\sigma]$$
; 2) $\sigma_{max} = \frac{F_{max}}{A} \le [\sigma]$; 3) $F_k = \frac{\pi^2 E I_{min}}{(\mu \ell)^2}$

56. По какой формуле можно произвести проверку прочности балки

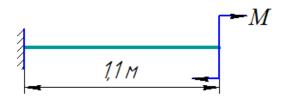
1)
$$\sigma_{max} = \frac{F_{max}}{A} \le [\sigma];$$


2)
$$\tau_{max} = \frac{M_{Kmax}}{W_{\rho}} \le [\tau];$$

3)
$$\sigma_{max} = \frac{M_{max}}{W_x} \le [\sigma]$$

57. Выберите формулу для определения жесткости балки:

- $1) y = \frac{F\ell^2}{48EI_x};$
- 2) $\Delta \ell = \frac{F\ell}{EA}$;
- 3) $\varepsilon = \frac{\Delta \ell}{\ell}$

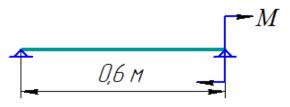


58. Выберите необходимую формулу для определения величины изгибающего момента:

1)
$$\Delta \ell_{max} = \frac{F\ell}{EA} \leq [\Delta \ell];$$

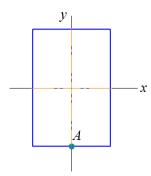
2)
$$\sigma_{max} = \frac{M_{max}}{W_x} \le [\sigma];$$

3)
$$\tau_{max} = \frac{M_{K_{max}}}{W_{\rho}} \le [\tau]$$

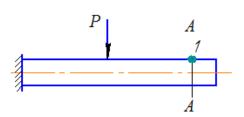


59. Выберите необходимую формулу для нахождения величины момента, приложенного к балке:

1)
$$\sigma_{max} = \frac{F_{max}}{A} \le [\sigma];$$


2)
$$\sigma_{max} = \frac{M_{max}}{W_x} \le [\sigma];$$

3)
$$\tau_{max} = \frac{M_{Kmax}}{W_{\rho}} \leq [\tau];$$


60. В сечении, представленном на чертеже, действует изгибающий момент $M_x = 4M$. Тогда нормальное напряжение σ_A , действующее в точке A сечения, равно:

- 1) $\sigma_A = \frac{|\sigma_{max}|}{2}$;
- $2) \sigma_{A} = \frac{|\sigma_{max}|}{8};$
- 3) $\sigma_A = 0$;
- 4) $\sigma_{A} = |\sigma_{max}|$

61. В точке 1 поперечного сечения А-А балки...

- 1) нет напряжений
- 2) действуют касательные напряжения т;
- 3) действуют нормальные напряжения о;
- 4) действуют нормальные σ и касательные τ напряжения.

62. Закон Гука при чистом сдвиге выражается формулой:

1)
$$\Delta \varphi = \frac{M_K \ell}{G I_\rho}$$
; 2) $\Delta \ell = \frac{N \ell}{E A}$; 3) $\sigma = \varepsilon \cdot E$; 4) $\tau = \gamma \cdot G$

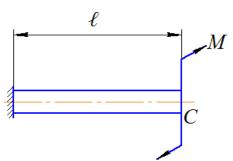
2)
$$\Delta \ell = \frac{N\ell}{EA}$$
;

3)
$$\sigma = \varepsilon \cdot E$$
;

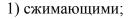
4)
$$\tau = \gamma \cdot G$$

63. Способность твердого тела сопротивляться изменению геометрических размеров и формы (способность сопротивляться деформированию) называется....

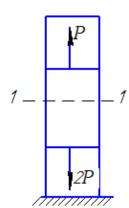
1) жесткостью; 2) прочностью; 3) выносливостью; 4) устойчивостью.


64. Пусть $[\varphi]_c$ – допускаемый угол поворота сечения C, GI_ρ – жесткость поперечного сечения при кручении. Тогда допускаемая величина момента М удовлетворяет неравенст-BV:

$$1) M \leq \frac{3GI_{\rho}[\varphi]_{c}}{\ell}$$


2)
$$M \leq \frac{GI_{\rho}[\varphi]_c}{\ell}$$

3)
$$M \leq \frac{GI_{\rho}[\varphi]_{c}}{2\ell}$$


$$4)\,M \leq GI_{\rho}[\varphi]_c$$

65. Для стержня, схема которого изображена на рисунке, деформации, возникающие в сечении 1-1, будут...

- 2) растягивающими;
- 3) равными нулю;
- 4) растягивающими и сжимающими.

66. Совокупность представлений, зависимостей, условий, ограничений, описывающих поведение элемента конструкции под внешним воздействием называется...

- 1) методом определения внутренних сил;
- 2) методом расчета на прочность и жесткость;
- 3) основным принципом расчета на прочность;
- 4) моделью.

3.1.2. Методические материалы

В течение семестра проводится два рубежных тестирования (через 2 месяца после начала обучения и в конце семестра), согласно календарному плану.

Рубежное тестирование включает 15 вопросов. Тестирование проводится в электронном виде на платформе Moodle. По окончанию тестирования на сайте появляется ведомость с оценками.

Тест считается выполненным, если обучающийся дал 60 и более процентов правильных ответов.

При неудовлетворительном результате обучающийся имеет право пересдать тест, однако максимальный балл будет снижен.

3.3. Зачет

3.3.1. Вопросы к зачету

- 1. Основные понятия и определения статики
- 2. Внешние и внутренние силы
- 3. Сосредоточенные и распределенные силы
- 4. Аксиомы статики
- 5. Связи и их реакции
- 6. Проекция силы на ось
- 7. Алгебраический момент силы относительно точки
- 8. Пара сил и алгебраический момент пары сил
- 9. Приведение силы к заданному центру
- 10. Статически определимые и статически неопределимые задачи
- 11. Замена распределенной нагрузки сосредоточенной силой
- 12. Проекция силы на плоскость
- 13. Сложение сил
- 14. Условия равновесия системы сходящихся сил
- 15. Векторный момент силы относительно точки
- 16. Теорема об эквивалентности пар сил, расположенных в одной плоскости
- 17. Теорема Пуансо
- 18. Условия равновесия произвольной плоской системы сил
- 19. Трение скольжения. Законы Кулона
- 20. Равновесие тела на шероховатой поверхности
- 21. Связь момента силы относительно оси с векторным моментом силы относительно точки на оси
- 22. Теорема о переносе пары сил в параллельную плоскость
- 23. Сложение пар сил
- 24. Условие равновесия пар сил
- 25. Приведение произвольной пространственной системы сил к простейшему виду
- 26. Инварианты приведения

- 27. Условия равновесия произвольной пространственной системы сил
- 28. Трение качения
- 29. Расчетная схема
- 30. Метод сечений
- 31. Напряжения
- 32. Деформации
- 33. Продольная сила
- 34. Диаграммы растяжения и сжатия
- 35. Виды напряженного состояния
- 36. Главные напряжения, главные площадки
- 37. Обобщенный закон Гука
- 38. Чистый сдвиг
- 39. Закон Гука при сдвиге
- 40. Моменты инерции сечений
- 41. Изменение моментов инерции при параллельном переносе осей
- 42. Изменение моментов инерции при повороте осей
- 43. Главные оси инерции
- 44. Крутящий момент
- 45. Напряжения при кручении
- 46. Деформации и перемещения при кручении
- 47. Прямой чистый изгиб
- 48. Построение эпюр поперечных сил и изгибающих моментов
- 49. Нормальные и касательные напряжения при изгибе
- 50. Деформации и перемещения при изгибе.

3.5.4. Методические указания

Проведение промежуточной аттестации проводится в соответствии с положениями ПВД-07 «О проведении текущего контроля успеваемости и промежуточной аттестации», ПВД-12 «О самостоятельной работе обучающихся». Зачет проводится в конце 2 семестра в устной форме. Обучающемуся предлагается два теоретических вопроса и задача. Решение задачи при ответе является обязательным. Если задача не решена, то считается, что промежуточный контроль не пройден. Для подготовки к ответу обучающемуся отводится 40 минут. Для того, чтобы получить допуск к зачету, обучающийся должен набрать не менее 36 баллов в течение семестра, т.е. не менее 60% баллов от максимально возможного количества за работу в течение семестра. Обучающиеся, набравшие в течение семестра более 60 баллов, могут быть освобождены от сдачи зачета. Максимальное число баллов, которое обучающийся может набрать на зачете – 40 баллов. Обучающийся считается прошедшим промежуточную аттестацию, если на зачете он набрал не менее 24 баллов. Далее баллы, набранные им в течение семестра, суммируются с баллами, набранными в ходе проведения зачета.